Context-aware Service Composition Framework in
Web-enabled Building Automation System

Son N. Han, Gyu Myoung Lee, Noel Crespi
Department of Wireless Networks and Multimedia Services
Institut Mines-Telecom, Telecom SudParis
91011 Evry Cedex, France
{son.han, gm.lee, noel.crespi} @it-sudparis.eu

Abstract—The Web of Things paradigm brings the available
and strongly-supported Web standards closer to the development
of applications over smart things regardless of their native
operating systems, linking physical world and cyber world.
Considering the Web of Things architecture, we propose a
framework that allows users and communities to create composite
services sensitive to context in the domain of building automation.
This is meaningful as the capability of automatic responses to
context changes is critical to the successful functioning of a
building automation system.

I. INTRODUCTION

The advance in embedded technology has brought smart
things to home, work space and many aspects of the daily
life. These smart things even evolve further by joining in
interconnected networks to create automatic controlling appli-
cations such as environmental monitoring or surveillance. To
facilitate this kind of connection, several low-power network
protocols have been introduced such as Zigbee, Bluetooth,
IEEE 802.15.4 or most recently 6LoWPAN [1]. Several service
platforms propose a standardized integrated architecture to
facilitate the cross-integration of smart things. However, these
systems are not fully compatible with one another and their
complexity and lack of well-known tools let them only reach a
relatively small community of expert developers. Hence their
direct usage for innovative applications (e.g., mobile or Web-
based applications) has been rather limited to date. The Web of
Things paradigm [2] as a refinement of Internet of Things has
explored the development of applications built upon physical
objects not only connected to the Internet but into the Web.
Then, Service-Oriented Computing (SOC) can be used to map
each physical device with a corresponding Web service. The
goal of these initiatives can be summarized as trying to create
a loosely coupled ecosystem of services for smart things.
That is, a widely distributed platform in which the services
provided by smart things can be easily composed to create
new applications and use-cases. Then applications can be
built with Web technologies by composing Web services. That
will enable the possibility of developing automatic controlling
application such as Building Automation System (BAS). One
of the critical requirements of this kind of system is the
context awareness since context changes all the time in the
building space at every participating entity: people, device and
environment. Therefore, a dynamic composition mechanism is

needed at runtime to make system function properly regardless
of the changes in users, devices or environmental context.

Policies are being increasingly used for automated system
management and controlling the behavior of the complex
systems. The use of policies allows the modification of be-
havior without changing the behavior implementation itself or
requiring the consent or cooperation of the components being
governed. By changing policies, a system can be continuously
adjusted to accommodate variations in externally imposed con-
straints and environmental conditions. In this paper, we adopt
the policy-based approach for dynamically composing services
based on the information about context that is received,
processed and modeled though a context modeling layer. We
propose a three-layer framework to develop a dynamic context-
aware composition application of smart things using policies
for BAS: Context Modeling Layer for processing context;
Composition Layer consists of functional engines for policy
asserting, service composing and service executing; and on top
of that is Application Layer for developing GUI Web-based
application for wrapping underlying engines.

The paper is organized as follows. Next section covers
the background of Web of Things architecture, Building Au-
tomation System, context awareness and policy. The following
sections are about the configuration of the system and overall
architecture of the framework. Afterwards, we explain details
in Service Composition Engine, analyze a case study and
conclude.

II. BACKGROUND

Building automation industry has advanced over the last
decades. Several communication protocols and a variety of
BAS products from various vendors are available on the
market. In former BASs those products have typically been
interconnected by proprietary communication protocols. There
has been employment of standard communication protocols
such as LonWorks [3], Building Automation and Control Net-
work (BACnet) [4] and KNX [5]. They have been conceived to
cover all domains of building automation, including Heating,
Ventilating and Air Conditioning (HVAC), lighting, and alarm-
ing. The major problem is the interoperability of products from
different vendors. However, standard communication protocols
have not been able to completely solve the integration problem

due to still existing proprietary products. Therefore new ap-
proaches have to be developed for the integration of building
automation subsystems. The evolution of the Web and Web
technologies has created new opportunities for solving that
integration problem in building automation by adopting SOC
and Web services that are self-contained, modular software
applications that can be published, located, and called across
the web [6]. They are based on other Web technologies, such
as Extensible Markup Language (XML) [7], Web Services
Description Language (WSDL) [8], and Simple Object Ac-
cess Protocol (SOAP) [9]. The convergence of information
technology and Web-based control software is driving major
changes in the building controls industry. Conventional BASs
feature a central computer linked to controllers embedded in
lighting, HVAC and security equipment within a building.
Web services can be used to connect buildings to the Internet
through gateways, which convert the buildings control com-
munications protocol to Web-based communications protocol.
These systems allow access to building automation systems
from Web-based application and also provide more flexibility
and accessibility than conventional BASs all of which could
help increase the market for BASs.

In the last decade, important progress in the field of embed-
ded systems has given birth to a great number of tiny com-
puters, smart devices to which any type of sensors/actuators
can be attached. By inter-connecting these devices using low-
power wireless communication, a whole new world of possible
applications is unveiled. Networks of such physically dis-
tributed and smart devices are valuable tools for monitoring the
physical world, for controlling security systems, monitoring
house and building, etc. With the goal of facilitating the
Web standards for development of application over devices
and appliances, several research initiatives look at adapting
these services to the real-world [10] [11] [12]. The goal
of these initiatives can be summarized as trying to create
a loosely coupled ecosystem of services for smart things.
That is, a widely distributed platform in which the services
provided by smart things can be easily composed to create new
applications. And particularly, a complete architecture of Web
of Things was introduced in [2]. It is four-layer architecture
that provides a comprehensive mechanism for the development
of Web of Things applications. However, these works only
provide necessities for the development of such application
over smart things or devices. They lack a framework to
enable the development of composite applications with context
awareness.

Context awareness plays an important role in the pervasive
computing architectures to enable the automatic modification
of the system behavior according to the current situation
with minimal human intervention. Since appeared in [13],
context has become a powerful and longstanding concept in
human-machine interaction. As human beings, we can more
efficiently interact with each other by fully understanding the
context in which the interactions take place. It is difficult
to enable a machine to understand and use the context of
human beings. Therefore the concept of context-awareness

Universal Gateway .
AppServ?r 4

Fig. 1.

System Configuration

becomes critical and is generally defined by those working
in ubiquitous/pervasive computing, where it is a key to the
effort of bringing computation into our lives. One major task in
context-aware computing is to acquire and utilize information
about the context of participating entities of a system in order
to provide the most adequate services. The service should be
appropriate to the particular person, place, time, event, etc.
where it is required. In the scope of building automation, user,
device and environment context should be considered in order
to build powerful composite services.

Web service composition involves combining and coordinat-
ing a set of services with the purpose of achieving functionality
that cannot be realized through existing services. This process
can be performed either manually or automatically (or semi-
automatically in some cases), while it can occur when design-
ing a composite service, hence producing a static composition
schema or at run-time, when that particular service is being ex-
ecuted, leading to dynamic composition schemas. There have
been several researches for automatic service composition,
especially ones adopting policy [14] [15] [16]. However, these
works only focus on heavy business services and use policy as
a supplement or security enforcement for service description
to enhance the composition process. This limits the application
to Web of Things architecture where services need to deal with
the context rather than complicated underlying business logic.

We propose a three-layer framework mainly deployed on a
universal gateway inside the building to enable community and
expert to develop composite applications over smart things.

III. SYSTEM CONFIGURATION

Fig. 1 shows the overall system configuration. In each room,
devices, sensors and actuators connect to a Local Gateway by
low-power physical and transport network protocols such as
Zigbee, Bluetooth, IEEE 802.15.4 or 6LoWPAN. The Object
Gateway is a software component consisting of three basic
layers: Device Drivers supports several types of devices; Web

8

Universal Server/AppServer

Repository Server

4.(

Web-based BAS Managing Application

Composite Service

Description /

A

—/

Service Composition Engine

Policy Repository

User Profile
Manager

Device Profile En\.rlron ment
Manager Profile Manag

Context Broker

Ob]ect ObJeC‘l
Gateway Gateway

ObJec:t Object
Gatewa Gatewa

Fig. 2.

Service Framework provides methods for binding URI to func-
tionalities of the represented physical objects and Embedded
Application Server serves the service requests through SOAP
messages. For devices that are already Web-enabled (that is
they support HTTP over TCP/IP), the driver implementation
can simply forward requests from the presentation layer to
the physical device. However, when the device is not Web-
enabled the driver in the Object Gateway is responsible to
translate the Web request into a protocol understood by the
physical device. Device driver acts as a resource representation
(or proxy) for the underlying physical device. Considering a
temperature sensor changing its temperature, instead of polling
the device every time a client requests the temperature, the
driver can store the temperature and return the value directly,
thus minimizing the actual communication with devices. This
caching mechanism is very useful for shared access to real-
time sensor data collected with low-power devices [17] [18].
Object Gateways connect with Universal Gateway/AppServer
to expose physical objects as Web services and to provide
context information. An application can be built on Universal
Gateway to execute composite services over smart devices.
Universal Gateway connects to the operating center and data
center by an Operator Gateway that plays as a proxy for
exposing all device services to Web and enforcing security.

IV. FRAMEWORK ARCHITECTURE

The framework consists of three main layers and two
repositories as shown in the Fig. 2. In Context Modeling
Layer, Context Broker receives context information from
Object Gateways, processes such information into structured

Service Repository

Framework Architecture

data with pieces of information about identifier and context.
The data is then passed to corresponding Profile Manager
for updating user or device or environment profiles. Service
Composition Engine with reference to Repository Server and
Profiles searches among available services the matching ser-
vice based on composite policies. Application Layer provides
an environment to develop GUI application to interact with
Composition Layer and Context Modeling Layer.

A. Context Modeling Layer

Context is formally defined by [19] as any information that
can be used to characterize the situation of an entity. An
entity can be a person, place, or object that is considered
relevant to the operation, including the user and the application
themselves. Meanwhile, context-awareness is defined as a
capability of a system that uses context to provide relevant
information to the user, where relevance depends on the user’s
task. [19]. Therefore, context modeling is required for the
wide range of heterogeneous context information in context-
aware computing. It helps application designers and developers
to uncover the possible context and simplify the context
manipulation. The conceptual viewpoints of context models
can be summarized as: who, where, what occurs, when, what
can be used and what can be obtained [20].

In this framework, Context Broker is in charge of processing
raw context data received from Object Gateways. We define
BAS context as of (1) the user context made of his location,
preferences and activities, (2) the device context made of its
location and status, (3) environment context made of external
physical properties such as temperature, humidity, etc. Each

Location
Source: htip://

localhost/floor8/
elevator/8A?wsdl

Entity
- Type: UserLocation
- Identifier: http://locahost/visitor/005

Fig. 3. A ContextML Data

type of context information is managed by one of three profile
managers User Profile Manager, Device Profile Manager and
Environment Profile Manager. Data from Context Broker is
passed to corresponding profile manager among the three. For
discussion in this paper we present the context representation
in light-weighted ContextML [21]. ContextML is used in our
context provisioning system to model context information, and
some control messages as well. ContextML consists of two
core elements: Entity and Scope. Each entity contains a Type
and an Identifier. Type can be as follows: UserLocationm,
UserPreference, UserActivity, DeviceLocation, DeviceStatus,
Environment. Specific context information in ContxtML is
defined as Scope and is a set of closely related context pa-
rameters. Every context parameter has a name and belongs to
only one scope. Using scope as context exchange unit is very
useful because parameters in that scope are always requested,
updated, provided and stored at the same time; it means that
data creation and update within a scope are always atomic
and that context data in a scope are always consistent. Scopes
themselves can be atomic or aggregated in a union of different
atomic context scopes. Fig. 3 demonstrates a sample context
data represented in ContextML that is used in the case study
later. The context with Type of UserLocation and Identifier
of the visitor and Scope about his location detected by the
elevator with URI: http://localhost/floor8/elevator/8 A?wsdl

B. Composition Layer

Local Gateways feed context information to Context Broker
for processing to parse to structured data which then is sent
to and updated to Profiles. At the same time, signal is sent
to Service Composition Engine to re-compose the composite
service based on updated Profiles.

Service Composition Engine as shown in Fig. 4 consists of
four modules Service Description, Service Executor, Service
Selector, Policy Assertion and one database of a shared
knowledge about service called Service Dictionary.

Composite Service Description is an environment allowing
users to create a new service in ease. It can be Natural
Language Enabled Service Creation Environment (e.g. SPICE
Natural Language Composer), Friendly Graphical Service
Creation Environment (e.g. YahooPipe), widget based service
creation environment (e.g. EzWeb). After user validates a
new created composite service in the friendly service creation
environment, the Composite Service Description abstracts the
requirements for the new service according to users input
and sends it to Service Selector for selecting the appropriate
services.

Policy Assertion retrieves policy from Policy Repository and
analyzes it to determine appropriate action or script to transfer
from Service Description to Service Selector.

Service Selector receives decision direction from Policy
Assertion and searches over Service Repository to select the
matching services to meet the requirements from Service
Description.

Service Executor performs the services chaining by trans-
ferring the service invocation request to the corresponding
capabilities

Service Dictionary provides a shared knowledge of service
concept. It can be implemented as simple dictionary of a
structured database or an Ontology, etc. The dictionary is a
linking channel for other functional blocks in Service Com-
position Engine by querying the same knowledge represented
in Service Dictionary.

V. CASE STUDY AND DISCUSSION: VISITOR RECEPTION

We analyze a case study in to illustrate the proposed archi-
tecture. A visitor is going to attend a meeting in a company
located in the 8th floor of the building. When he arrives at the
front desk in the first floor, a receptionist requests his creden-
tial and provides it to the system. System looks for his data
and put his profile in his mobile phone by a simple touch with
NFC communication. A composite service VisitorReception is
activated. This consists of Messaging service, Lighting service
(same as all authenticated people in the building) and Elevator
service. He can receive message from Messaging service about
all the details of the meeting as well as guide information.
We consider a simple scenario when visitor walks around and
wants to use an elevator. All he needs to do is to go close to
that elevator. The system can detect his location via his profile
as well as check his authentication to use the building facilities
and then summon the elevator to serve him. Fig. 5 illustrates
what happens in our framework. The man goes to one of
the elevator located at the 8th floor, name it as elevator 8A.
The service to serve this elevator is exposed via Object Gate-

————— *I Service Composition Engine ‘ S
|
|
|

[

|

| N

‘ Service Service

‘ Executor Selector Service

‘ J Repository
[

Composite
Service
Description

Policy I
Assertion I

Policy
Repository

Profiles

Service
Dictionary

Fig. 4. Service Composition Engine

Sensor Object Gateway || Context Broker User Profile || Compeosition || Policy Repository || Service Repository
T T T T T T T
| Sansor signal: User's location | | | | |
L 1 1 | | | |
: : Update: User profile : : : :
I | ™ | | |
[: Trigger: Composition : I :
I 1 I
[| T T | |
I | | | Request: Policy | |
I | | | ——pl |
I | | | R X | |
\ | | 1 aturn: Policy | |
[i | | S 1 i
: : : : Request: IIEIevatol Service :
I | | | T -1
| | | I Return: Elevator Service 8A |
[| | I e mm————— I — |
: I No(ifncat#m : : I
e ——— Ao mm Ao = === === I I
[| |] | |
I | | | L] | |
I | | I | |

Fig. 5. Location-aware VisitorReception Service Composition Diagram

way through the URI: http://localhost/floor8/elevator/8 A?wsdl.
When the man gets close to the elevator, a sensor installed
above it detects his presence by his profile in his phone. The
sensor sends the context signal to Object Gateway and then to
Context Broker carrying information about (Type: UserLoca-
tion) and (Identifier: http://localhost/visitor/005) to Context
Broker. Context Broker processes this piece of information and
sends to User Profile Manager to update User Profile. Also,
Context Broker at the same time sends a signal to Service
Composition Engine for carrying out the composition process.
Here, Service Composition Engine queries policies related to
this composite service and execute Location Match policy
to choose a service of appropriate elevator 8A then looks
for service http://localhost/floor8/elevator/8 A?wsdl in Service
Repository. Service Composition Engine finally executes the
service to summon the elevator to serve the man and signal to
the sensor about the task accomplished.

As described in this demonstration, the composite service
can be even predefined for a specific case (e.g. VisitorRecep-
tion Service). It is created by organizer of the meeting and
transparent to the user. Context-awareness property is main-
tained during the lifecycle of the composite service to bring
user new experience of ubiquitous computing. This is what
current approaches in [2] and [22] cannot carry out because
of the static solution for the composition problem.

VI. CONCLUSION AND FUTURE WORK

We have proposed a three-layer framework for developing
BAS with dynamic context-aware service composition. The
framework also adopted the policies and Service Dictionary as
shared knowledge for the composition process. This is the first
time a framework for building context-aware application for
smart things under the umbrella of Web of Things paradigm
was discussed. Analysis based on the representation of context
by ContextML suggested the applicability of the framework.
In the future, we will develop new context modeling that
is semantic, light-weight and compatible with other SOC
technologies. We will also consider representing Service Dic-
tionary by an Ontology to interact with semantic context

modeling. And ultimate objective will be to develop algorithms
for dynamic and automatic context-based service composition.

REFERENCES

[1] J. Hui and D. Culler, “Extending ip to low-power, wireless personal
area networks,” Internet Computing, IEEE, vol. 12, no. 4, pp. 37 45,
july-aug. 2008.

[2] D. Guinard, “A web of things application architecture — integrating

the real-world into the web,” Ph.D. dissertation, ETH Zurich, Zurich,

Switzerland, Aug. 2011.

E. 14908, “Open data communication in building automation, controls

and building management - building network protocol,” LonWorks,

2005.

I. O. for Standardization. ISO 16484-5, “Building automation and

control systems - part 5: Data communication protocol,” BACnet, 2008.

I. O. for Standardization. ISO 14543-x, “Information technology - home

electronic system (hes) architecture,” KNX.

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,

and D. Orchard, “Web Services Architecture,” W3C Working Group

Note, vol. 11, pp. 20051, 2004.

“Extensible Markup Language (XML) 1.1 (Second Edition),” Tech.

Rep., Aug. 2006. [Online]. Available: http://www.w3.org/TR/xml11/

[8] “Web services description language (wsdl) version 2.0 part 1: Core lan-
guage,” Tech. Rep. [Online]. Available: http://www.w3.org/TR/wsdl20/

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1,” World Wide Web Consortium, W3C Note, May 2000,
see http://www.w3.0org/TR/SOAP/.

[10] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web
services: design and implementation of interoperable and evolvable
sensor networks,” in Proceedings of the 6th ACM conference
on Embedded network sensor systems, ser. SenSys ’'08. New
York, NY, USA: ACM, 2008, pp. 253-266. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460438

[11] E Jammes, A. Mensch, and H. Smit, “Service-oriented device
communications using the devices profile for web services,” in
Proceedings of the 3rd international workshop on Middleware
for pervasive and ad-hoc computing, ser. MPAC ’05. New
York, NY, USA: ACM, 2005, pp. 1-8. [Online]. Available:
http://doi.acm.org/10.1145/1101480.1101496

[12] T. Riedel, N. Fantana, A. Genaid, D. Yordanov, H. Schmidtke, and
M. Beigl, “Using web service gateways and code generation for sus-
tainable iot system development,” in Internet of Things (I0T), 2010, 29
2010-dec. 1 2010, pp. 1 -8.

[13] B. Schilit, N. Adams, and R. Want, “Context-aware computing
applications,” in Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, ser. WMCSA *94. Washington,
DC, USA: IEEE Computer Society, 1994, pp. 85-90. [Online].
Available: http://dx.doi.org/10.1109/WMCSA.1994.16

[14] S. A. Chun, V. Atluri, Nabil, and R. Adam, “Using semantics for policy-
based web service composition,” Distributed and Parallel Databases,
vol. 18, p. 2005, 2005.

3

=

[4

=

[5

[t

[6

—_

[7

—

[15]

[16]

(17]

[18]

[19]

Z. Maamar, D. Benslimane, and A. Anderson, “Using policies to manage
composite web services,” IT Professional, vol. 8, no. 5, pp. 47 51, sept.-
oct. 2006.

Y. Chevalier, M. Mekki, and M. Rusinowitch, “Automatic composition
of services with security policies,” in Services - Part I, 2008. IEEE
Congress on, july 2008, pp. 529 -537.

T. Riedel, N. Fantana, A. Genaid, D. Yordanov, H. Schmidtke, and
M. Beigl, “Using web service gateways and code generation for sus-
tainable iot system development,” in Internet of Things (IOT), 2010, 29
2010-dec. 1 2010, pp. 1 -8.

V. Trifa, S. Wieland, D. Guinard, and T. M. Bohnert, “Design and
implementation of a gateway for web-based interaction and management
of embedded devices,” in Proceedings of the 2nd International Workshop
on Sensor Network Engineering (IWSNE 09), Marina del Rey, CA, USA,
Jun. 2009.

A. K. Dey and G. D. Abowd, “Towards a better understanding of
context and context-awareness,” in In HUC 99: Proceedings of the
Ist international symposium on Handheld and Ubiquitous Computing.

[20]

[21]

[22]

Springer-Verlag, 1999, pp. 304-307.

M. A. Razzaque, S. Dobson, and P. Nixon, “Categorization and modeling
of quality in context information,” in Proceedings of the IJCAI 2005
Workshop on Al and Autonomic Communications, 2005. PLANET, FZI,
ICCS, TUM, EPFL, CIM, INTRAINTL, LIPSZ, TRT, TXT Page 47 of,
2006.

M. Knappmeyer, S. L. Kiani, C. Fra, B. Moltchanov, and
N. Baker, “Contextml: a light-weight context representation and
context management schema,” in Proceedings of the 5th IEEE
international ~conference on Wireless pervasive computing, ser.
ISWPC’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 367-372.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1856330.1856394
D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Proceedings of INSS 2009 (IEEE Sixth
International Conference on Networked Sensing Systems), Pittsburgh,
USA, Jun. 2009.

